Basic Integrals
∫ 1 dx = x + C
∫ xn dx = xn+1/(n+1) + C, n ≠ -1
∫ ex dx = ex + C
∫ ax dx = ax/ln(a) + C, a > 0, a ≠ 1
∫ 1/x dx = ln|x| + C
Trig Integrals
∫ sin(x) dx = -cos(x) + C
∫ cos(x) dx = sin(x) + C
∫ sec2(x) dx = tan(x) + C
∫ csc2(x) dx = -cot(x) + C
∫ sec(x)tan(x) dx = sec(x) + C
Inverse Trig Integrals
∫ 1/√(1-x2) dx = sin-1(x) + C
∫ 1/(1+x2) dx = tan-1(x) + C
Exponential and Logarithmic Integrals
∫ eax dx = (1/a)eax + C
∫ ln(x) dx = x ln(x) - x + C